
Integral-preserving integrators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 L489

(http://iopscience.iop.org/0305-4470/37/39/L01)

Download details:

IP Address: 171.66.16.64

The article was downloaded on 02/06/2010 at 19:10

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/39
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) L489–L495 PII: S0305-4470(04)82709-4

LETTER TO THE EDITOR

Integral-preserving integrators

D I McLaren1 and G R W Quispel2

1 Department of Mathematics, La Trobe University, Victoria 3086, Australia
2 Department of Mathematics and Centre of Excellence for Mathematics and Statistics of
Complex Systems, La Trobe University, Victoria 3086, Australia

E-mail: D.McLaren@latrobe.edu.au and R.Quispel@latrobe.edu.au

Received 1 July 2004, in final form 20 August 2004
Published 15 September 2004
Online at stacks.iop.org/JPhysA/37/L489
doi:10.1088/0305-4470/37/39/L01

Abstract
Ordinary differential equations having a first integral may be solved numerically
using one of several methods, with the integral preserved to machine accuracy.
One such method is the discrete gradient method. It is shown here that the order
of the method can be bootstrapped repeatedly to higher orders of accuracy. The
method is illustrated using the Henon–Heiles system.

PACS numbers: 02.60.Gh, 02.60.Nm

1. Introduction

Since about 1990 there has been a great deal of interest in geometric integration, the numerical
solution of differential equations while preserving one or more (geometric) properties exactly
(i.e. up to round-off error) [1–3, 8, 9, 13]. This has led to symplectic integrators [13], integral-
preserving integrators [7], volume-preserving integrators [11, 14], integrators that preserve
Lyapunov functions [7], foliations [10], Poisson structure [6], Lie group structure [4], etc.

In this letter, we study the preservation of first integrals (such as energy, momentum,
angular momentum, etc) by linear-gradient methods (an alternative, the projection method, is
described in [3]). The traditional method of obtaining integral-preserving integrators (IPIs)
of higher order of accuracy, is to first construct a second-order IPI, and then to use Yoshida’s
composition method [15] to obtain higher order IPIs. The purpose of this letter is to introduce
a more efficient alternative method.

2. Background

An ordinary differential equation with a first integral I (x),

dx

dt
= f (x), with f (x) · ∇I (x) = 0, x ∈ R

n, (1)
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can be written3 [12, 7] in the form

dx

dt
= S(x) · ∇I (x), x ∈ R

n, (2)

where S is a skew-symmetric n × n matrix. An integral-preserving discrete version of this is

(x ′ − x)

τ
= S̃(x, x ′, τ )∇̄I (x, x ′) (3)

where x, x ′ denote xn resp. xn+1, and where S̃ is a skew-symmetric matrix satisfying (for
consistency)

S̃(x, x ′, τ ) = S(x) + O(τ).

The general discrete gradient ∇̄I is defined by

(x ′ − x) · ∇̄I (x ′, x) := I (x ′) − I (x) (4)

and may be expanded in the form

∇̄I (x, x ′) = ∇I + B(x)(x ′ − x) + (x ′ − x)T M(x)(x ′ − x) + O(‖x ′ − x‖3). (5)

Substitution of (5) into (4) leads to

Bij + Bji = Iij , and Mijk + Mjki + Mkij = 1
2Iijk. (6)

In this letter, subscript indices will take their usual meaning as labels of vector, matrix
or tensor components, except for those involving the integral I, in which case Ii := ∂I

∂xi
,

Iij := ∂2I
∂xi∂xj

, etc. Further, a repeated index in an expression will imply summation over that
index.

The order of accuracy of an integral-preserving integrator (IPI) based on (3) is determined
by S̃ and by the choice of discrete gradient ∇̄I (x, x ′), i.e. by S̃ and the matrix B, the tensor
M, and higher order parts of ∇̄I . If a discrete gradient ∇̄I for which ∇̄I (x, x ′) �= ∇̄I (x ′, x),
and skew matrix S̃ = S(x) are used, the IPI obtained from (3) is first order.

3. Bootstrapping to higher order

3.1. From first order to second order

We demonstrate a method for ‘bootstrapping’ the order of an IPI. Note that from now on we
restrict to systems having a constant matrix S(x) = S, for example Hamiltonian systems.
Starting with the first-order integrator

(x ′ − x)

τ
= S1∇̄I (x, x ′), (7)

where S1 := S, substitution of (x ′ − x) from (7) into the second term of (5) gives the
approximation

∇̄I (x, x ′) = (Id + τBS)∇I (x) + O(τ 2). (8)

Differentiation of (1) for the case of constant S gives

ẍ = SHS∇I (9)

where H is the Hessian, Hij := ∂2I
∂xi∂xj

. Then

(x ′ − x)exact − (x ′ − x)1st order IPI = τ 2SQS∇I + O(τ 3) (10)

3 Under some technical conditions that are generically satisfied (see [7]).
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with skew matrix Q(x) := 1
2H(x) − B(x). The RHS of (10) provides a correction term that

leads to the second-order integrator

(x ′ − x)

τ
= S2(x)∇̄I (x, x ′). (11)

Here,

S2(x) := S + τSQ(x)S. (12)

3.2. From second order to third order

The second-order integral-preserving integrator (11) can similarly be bootstrapped to third
order. We obtain

(x ′ − x)exact − (x ′ − x)2nd order IPI = τ 3R∇I + O(τ 4) (13)

with

R := SQSQS − 1
12SHSHS + E (14)

where

Ekn := SkiPijmSjlIlSmn (15)

with

Pijm := 1
6Iijm − Mijm. (16)

It is interesting to note that E is not necessarily skew.
Neverthess, it follows from (6) that

Pijm + Pjmi + Pmij = 0, (17)

and hence

(∇I )T E∇I = 0. (18)

We thus obtain a third-order IPI as follows:
x ′ − x

τ
= S3(x, x ′)∇̄I (x, x ′), (19)

with

S3 := S2 + τ 2R̄ = S + τSQS + τ 2R̄ (20)

where

R̄ := SQSQS − 1
12SHSHS + Ē (21)

and

Ēkn := SkiPijmSjl(∇̄I )lSmn. (22)

With this definition, even though S3 will not be skew, we will have

(∇̄I )T S3∇̄I = 0, (23)

confirming that (19) is an IPI.

3.3. From third order to fourth order

To gain a fourth-order integrator, one can make the composition φ τ
2

◦ φ−1
− τ

2
, where φ is the

third-order integrator (19). An alternative would be to bootstrap from third to fourth order.
We hope to report on this in the future.
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4. A choice of non-symmetric discrete gradient

A suitable discrete gradient is that due to Itoh and Abe [5]:

∇̄1I (x, x ′) :=




I (x ′
1,x2,x3,x4,...,xn)−I (x1,x2,x3,x4,...,xn)

x ′
1−x1

I (x ′
1,x

′
2,x3,x4,...,xn)−I (x ′

1,x2,x3,x4,...,xn)

x ′
2−x2

...

I (x ′
1,x

′
2,x

′
3,x

′
4,...,x

′
n)−I (x ′

1,x
′
2,...,x

′
n−1,xn)

x ′
n−xn




. (24)

In this case,

Bij =



0 if i < j
1
2Iii if i = j

Iji if i > j.

(25)

Regarding the tensor M, each of the symmetric matrices Mk, k = 1, . . . , n, is defined by

Mkij =




0 for i, j > k if k � n − 1
1
2Ikii for i = 1, 2, . . . , k − 1, j = i

1
6Iiii if i = k, j = i

1
2Ikij for j = 2, 3 . . . , k − 1, i = 1, 2, . . . , j − 1
1
4Ikik for i = 1, 2 . . . , k − 1, j = k

Mkji (symmetric).

(26)

Conditions (6) are satisfied by (25) and (26), respectively.

5. Numerical experiments

To demonstrate the advantages of these new integrators we will present a comparison of the
discrete mechanics fourth-order integrator (DM) derived by the bootstrap process described
above with that found using Yoshida’s method [15] (referred to as Yo) to increase the accuracy
of a second-order discrete-gradient integrator to fourth order. The second-order integrator
used here was [12]

x ′ − x

τ
= S∇̄3I (x, x ′), (27)

where

∇̄3I (x, x ′) := ∇̄1I (x, x ′) + ∇̄1I (x ′, x)

2
. (28)

Both DM and Yo are applied to the (Hamiltonian) four-dimensional Henon–Heiles (H–H)
system:

ẋ1 = x3 ẋ2 = x4

ẋ3 = −x1 − 2x1x2 ẋ4 = −x2 − x2
1 + x2

2

(29)

and first integral (the Hamiltonian)

H = 1
2

(
x2

1 + x2
2 + x2

3 + x2
4

)
+ x2

1x2 − 1
3x3

2 . (30)
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Figure 1. Global error versus CPU time for the two fourth-order integrators DM and Yo, for 31
step sizes—starting at τ = 0.08 and reducing exponentially by a factor of 1.1. The system was
integrated up to tmax = 104 in each case.

In this case, the integrator DM is given by φ τ
2
◦φ−1

− τ
2
, with φτ defined by x ′ −x = τS3∇̄1H ,

where ∇̄1H is given by equation (24):

∇̄1H(x, x ′) =




(x1 + x ′
1)

(
1
2 + x2

)
1
2 (x2 + x ′

2) − 1
3

(
x2

2 + x2x
′
2 + x ′2

2

)
+ x ′2

1
1
2 (x3 + x ′

3)

1
2 (x4 + x ′

4)


 (31)

and where S3 is the 4 × 4 matrix

S3(x, x ′) =
[

0 A

−A B

]
, (32)

with

A =
[

1 + 1
12τ 2(1 + 2x2)

1
6τ 2x1

1
6τ 2x1 1 + 1

12τ 2(1 − 2x2)

]
(33)

and

B =
[ − 1

6τ 2(x4 + x ′
4) −τx1 − 1

6τ 2(x3 + x ′
3)

τx1 + 1
3τ 2(x3 + x ′

3) 0

]
. (34)

The initial conditions were x1 = x2 = x3 = x4 = 0.12.
A least-squares fit to the global error (E) versus step-size (τ ) data for the bootstrapped

third- and fourth-order integrators yields (for tmax = 104), respectively,

E ≈ 23.083τ 3.029 and E ≈ 1.855τ 4.001.

In figure 1 we show a comparison of global error versus CPU time (for a range of step
sizes). In figure 2 we show global error versus time for the same step size on the one hand,
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Figure 2. Global error versus time, using the same step size (τ = 0.01) for both integrators, and
(for DM) also τ = 0.0068 to achieve the same work (CPU time) as for Yo with τ = 0.01.

and also for the same work on the other hand. All computations were executed using double
precision Fortran 77 on a 400 MHz Macintosh G4.

For the data in figure 1, the initial step size was τ = 0.08, reduced by a factor of 1.1
before each repeat of the computations (done 30 times). In figure 2, step size τ = 0.01 was
used for the same step-size computations and in the Yoshida method case for the same-work
computations. When the DM code was executed, a step size of τ = 0.0068 was used in order
to have the same total CPU time as for Yo with step size τ = 0.01.
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